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Abstract 

We review the principles of aesthetic field theory and the latest results obtained from 
computer studies of the equations. 

1. Review o f  Literature 

In the past, there have been some at tempts  at obtaining nonsingular par- 
tiele-tike solutions of  nonlinear partial differential equations. Let me start off 
by giving a brief discussion of  the kinds of  results obtained by others, thus far. 

(a) Rosen (1966) worked with the equation 

He found a static solution 

0" - V 2 0  = 3g0 s (1.1) 

z 
0 - (z4g + r2)1/2 (1.2) 

with z, g as parameters. The graph of  this function has a maximum at the ori- 
gin and goes to zero at infinity. The field equations are not  drawn from physics. 
Nor is the solution particularly physical. The particle has little structure. Also, 
the solution describes only one particle. 

(b) Anderson and Derrick (1970) worked with 

0" - V 2 0  =gO 3 (1.3) 

They found a spherically symmetric solution with only a little more structure 
than Rosen. t  

(c) Born and Infeld (1934) generalized electrodynamics in a nonlinear way. 

* Lecture given at the Stanford Linear Accelerator Center, July 1974. 
See also Bisshopp, F. International Journal of  Theoretical Physics, 11,5. 
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Their equations are rather complicated so we will not repeat them here. They 
obtained a solution 

q 1 
Er r° 2 1 + ~ r  t4 (1.4) 

'V \to] 

with q, r o as parameters. The shape of this particle is somewhat similar to 
Rosen, in that it has a maximum at the origin and goes to zero at infinity. 

(d) Rosen (1972) worked with the classical Yang-Mills equation and found 
no particle-like solutions. 

(e) Renada and Soler (1972) did find a particle-like solution, but they had 
to go to 5 dimensions. 

(f) McLaughlin and Scott (1973) give reference to extensive work done in one 
spatial dimension equations. They refer to "pulse-like" solutions called solitons. 

The list of references discussed above is representative (and not exhaustive) 
of what has been done by others. In summary, we may say that the results are 
rather limted, to say the least. 

The first question in looking for particle-like behavior in a nonlinear theory 
is, which field equation should we use? We can't use Maxwell's equations or 
the Dirac equation or the Einstein gravitational equations, since here the particle 
is introduced by hand via the current density, the mass and charge, and the 
stress energy momentum tensor. 

Some generalizations of existing equations that have been tried are: 
(a) Born and Infeld's (1934) generalization of electromagnetism. 
(b) Heisenberg's (1961) generalization of the Dirac equation. 
(c) Einstein's (1955) and Schroedinger's (1950) generalizations of the gravi- 

tational equations. 
The difficulties with such generalizations are: 
(a) An infinite number of generalizations are possible. There is no experi- 

mental confirmation of any of the generalizations proposed. Thus, there is no 
reason to adopt any of these generalizations at this time. 

(b) The equations are so complicated that it is difficult to say what the 
generalizations even imply. 

(c) However, the difficulties go much deeper than this. For example, let us 
consider the Einstein-Schroedinger equations. They are obtained from an 
action principle, 6f~q~x/(-g) d4x = 0. What they did is to arbitrarily exclude 
higher derivatives from the Lagrangian density. This was done so that the final 
equations are no higher than 2nd derivatives in gij. 

But, there is nothing wrong with a higher derivative! We can say that an 
altogether too cavalier approach has been taken with respect to higher deriva- 
tives. Such a principle of exclusion of higher derivatives may have some local 
justification, but it is hard to consider it as anything but ad hoc. In summary 
the difficulty of the generalizations, thus far introduced, is that of mathemat- 
ical inelegance. 

The question is this: Is it possible to formulate a field theory based on 
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mathematically aesthetic principles? What might these principles be? Let me 
list some principles that we have been working with. The list is not meant to 
be rigid. 

2. Aesthetic Principles 

(a) All derivatives are treated in a uniform way. 
(b) All tensors are treated in a uniform way. 
(c) The field is to be continuous, singularity free, possess a Taylor series 

expansion-in short be analytic. 
(d) The field should go to zero at infinity. We refer to this condition as 

natural boundary conditions. Another possibility is that some fields be con- 
stant at infinity. 

(e) The theory should be self consistent. By this we mean that the equa- 
tions should be obtained using Aristotelian logic. 

(f) No arbitrary functions should appear in the theory- as this leads to too 
much arbitrariness. This excludes wave solutions, that have the function and 
the time derivative of the wave function arbitrary, on say a t = 0 hypersurface. 

(g) There should exist certain coordinate transformations that do not lead 
to a dynamic effect. We have worked with 0(3),  0(4), 0 ' (3 )  x T, L(4) (O 
refers to rotations, L to Lorentz transformations, T to time translations, and 
the prime means inhomogeneous transformations). 

We feel these principles are of such an attractive nature that we would 
expect them to be incorporated into physics at a fundamental level. 

We do not work in curved space for the following reasons: 
(a) Flat space is simpler. One does not usually go to a more complicated 

theory unless the simpler theory has been shown to be inadequate. This has 
not been the case. 

(b) Microscopic physics does not call for curved space, at least not yet. 
(c) Gupta (1957) and others have shown that the results of gravitational 

theory can be obtained without curved space. 
We shall work in a cartesian coordinate system. We refer to the 4th coor- 

dinate axis as the time axis. 

3. Derivation o f  FieM Equations 

As most theories allow for a vector field, we shall start off by assuming 
the existence of a vector field A i. 

We write for the change of the vector between two neighboring points 

dAi = rikAj dx k (3.1) 

That is, the change of Ai should depend on the displacement between the two 
points dxk. We drop terms of order (dx) 2 and higher. The change should also 
depend on Aj. The expression (3.1) can be made more general by allowing P~k 
to be a function of Ai, among other things. We call the set of coefficients ['/k 
the change function as it determines the change dAi. 
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For a 2nd vector Bi,  we write 

d &  = r ikB j & k  (3.2) 

We are, here, assuming that F,~k is a universal change function that determines 
the change of  all vectors in a similar fashion. We are thus requiring that one 
set of  numbers corresponding to a vector should not be fundamentally distin- 
guished from any other vector set of  numbers. After all, there is nothing pain- 
ted on a vector that says it is more important  than any other vector. 

Going one step beyond this, we require that the change function determines 
the change of  all tensor functions. An nth rank tensor acts like a product  of  n 
vectors in this regard. 

For the product AiB] we have, from (3.1) and (3.2), 

d(AiBi )  = ( I ' t kA tBj + I'fkAiBt) dx  k (3.3) 

A 2nd rank tensor acts like a product of  two vectors. Thus, we get, by inspec- 
ting (3.3) 

dgij = (Ptkgti  + [~:git)  dxX (3.4) 

Not only is the change function to determine the change of these quantities, 
it must also determine its own change as well. In cartesian coordinates the dif- 
ference between two vectors, d A b  is itself, a vector (unlike the case of  curvi- 
linear coordinates). Thus, F]k is a 3rd rank tensor. 

A i is introduced via A i = gilA ]. From (3.1) and (3.4), and assuming, for now, 
that gi /has  an inverse at all points, we get 

dA i = - r i g A  j 8 x  k (3.5) 

Since 1)% acts like AiBICk ,  we get from (3.1), (3.2) and (3.3) 

d[,/k = i m i m m tirol) ( rmXr / /  + r ] m P k l -  F]k dx  l (3.6) 

From continuity we have 

. v / k  - ° 
- d x  ( 3 . v )  

Thus, we get for our field equations 

m i • i m _  0l~]k + Fi k Pint F~kF)'~ - - Fire F k l -  0 

0x I 
(3.8) 

These are 256 nonlinear, partial differential equations for the change function 
alone. 

We note that the derivatives of  I jk  are given by products of  gammas. I f  we 
take a derivative of  this equation, we see that the second derivative of  1~]~ is 
also expressed entirely in terms of products of  gammas. In a similar fashion we 
can show that all derivatives of  P]k are given by products o f  gammas. We shall 
make use of  this result later on. 

Let us summarize what we have, thus far. We have assumed that there exists 
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a change function that determines the change of  all functions (see footnote 
one). But the change function is itself a function. Therefore, by Aristotalian 
logic the change function must determine its own change as well. The functions 
we are dealing with are tensor functions. This is the self consistent requirement 
listed under Aesthetic Principles (principle e). 

For gq, we have 

~gi:_ r:kgt: - r / k g ; t  = 0 ( 3 . 9 )  
3x k 

From (3.1) and (3.5), we see that A i A  i is constant. In addition we find that all 
scalars, that can be constructed from products and contractions of the fields, 
are constant. 

For a set o f  basis vectors eai, we get 

de°L i = I'~k e ~  d x  k (3.10) 

Here, a denotes which basis vector we are dealing with. From continuity, we 
have 

~eC~ i 
0x k = P~ke ~j (3.11) 

Introducing a set of  dual vectors ec / sa t i s f y ing  

e J  e~i = ~/  

we get, from (3.11) 

• Oe D 
P]~: = eal. 3x  k 

(3.12) 

(3.13) 

Thus, here P]k is a function of  basis vectors as previously suggested (see dis- 
cussion under equation (3.1)). From (3.16) and (3.12) we get 

d e c / =  - P/ke~ i dx  k (3.14) 

This has the same structure as dA j in (3.5). The result (3.14) may be used in 
the case where the determinant of g is zero and so the inverse field f ]  does not 
exist. The utility of  (3.14) would then depend on e f t  having an inverse at all 
points. 

A variant theory is given by 

deC'i = ( P{ik e~] • -- P ~k e~ i) dx  k (3.15) 

Here we have a change function for ij indices and a change function for 
indices. Since r./,. itself has only ij indices, we get the same final equations as l a .  

previously [equation (3.8)]. 

I The manner in which the change function determines the change of various functions is 
such that all tensors and derivatives of tensors are treated in a uniform way. 
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Thus, we have formulated a theory in which all tensors are treated in a 
uniform manner. The question that arises is whether this leads to a never end- 
ing series of  restrictions on the theory. 

For example, let us consider d(P]kgtt). This acts like AiB]CkDtEI . Thus, 
from (3.1), (3.2) and (3.3) we get 

Prnsgt l  PrnkP]s g t l  d r J k g t l = ( _ r j ~  i + i m 

i m i m " 
+ I )m Pksg t l  + + r]kI'tsgmt r]kr~gtm)& ~ (3 .16)  

But,  on the other hand, we also have 

d(ljlcgtl) = (dFjlc)gtl + Ijk(dgtl) (3.17) 

Inserting (3.4) and (3.6) into (3.17), we get the same answer as (3.16). We can 
do this for a general product of  fields (including contractions). The result is 
that we get no new restrictions on the theory by treating all tensors in a uni- 
form way. 

What about the case of  derivatives? For example, we may consider d(~rn P]k)- 
But by the field equation, what is inside the parenthesis, can be expressed in 
terms of  products of  the fields. As we pointed out previously, this is the case 
for all derivatives o f  the fields (this is true whether they be of  Ai, e~, gq or 
P]k). Thus, by the results o f  the previous paragraph, we conclude that no new 
conditions appear as a result of  requiring that all derivatives are treated in a 
uniform way. 

Note also that a derivative acts like a vector in a cartesian space. Thus, the 
condition that all derivatives are treated in a uniform way can be included in 
the hypothesis that requires all tensors be treated uniformly so far as their 
changes are concerned. 

4. Local Existence of  Solutions 

Thus, we have constructed a field theory based on mathematically aesthetic 
principles. This may be all well and good, but suppose there are no nontrivial 
solutions to the field equations. So the next problem is to demonstrate local 
existence of  solutions. We will be unable to prove global existence analytically. 
However, our computer work suggests that global existence may also be present. 

Let us digress for the moment and say something about the computer pro- 
gram as it will give us some intuitive feeling for what is going on. 

We have from (3.6) 

r]k(Q)= i + i m i m m i dx l  Fjk(P) (FmkF~l + P]mPkl -- FficFml} (4.1) 

where Q and P are two neighboring points. The bracketed quantity to the low- 
est order is evaluated at P. In the computer we have a finite grid 2~x l instead 
of  the infinitesimal dx t. From (3.17) we may calculate the field at Q given the 
field at P. Once we have the field at Q, we can calculate the field at the next 
neighboring point Q in the same way, since the field equations for P]k hold at 
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ail points. In such a manner,  we can map out the field at all points of space 
given the field at one particular point. This mapping process can be carried out 
in principle no matter  how small the grid is. The only problem is whether we 
get the same answer at a point if we arrive at that point along different paths. 
In order for the answer to be unique it is necessary for a set of  integrability 
equations to be satisfied. These integrability equations arise from the require- 
ment  that all mixed derivatives of  fields be symmetric. Then, the results will 
be independent of  path. 

We can look at the problem in a somewhat different way. Given a finite 
field P/k at P, we can calculate a finite number of  derivatives of  P/k at P, since 
derivatives of P/k are given by products of  P]k" Also since a second derivative 
is given by the difference of first derivatives at neighboring points, we can 
solve for 3r]k/3x t at Q in terms of  the fields at P. In this way, a finite number 
of  derivatives of  F]k can be seen to exist in the region, around P (see footnote 
2). Thus, the conditions for the existence of a Taylor s series are met  (see T. 
Apostal, Mathematical Analysis, p. 96). Thus, we have 

~P/gt 1 32P/k 1 
Ijk(R) = ['/k(g) + OX l ]p Axl  + --2 3x m OxnJe 2xXmAX n + . . .  (4.2) 

where Ax t is the displacement between R and P. From (4.2) and (3.8) we see 
that we can calculate P]k(R) in a unique manner given P]k(P), provided that 
the mixed derivatives in (4.2) are symmetric at P. This agrees with what we 
have said previously. From 

02gi] = 32gi/ (4.3) 
3X t¢ 3X rn ~)X rn ~)X k 

we get 

where 

From 

t t 
g thRimk  + g i t R hmk  = 0 (4.4) 

i t (4.5) a r t  ~r/m r~mr/k + r~krim 
R~mk - 3X m Ox k 

3ZPJk = 32F]k (4.6) 
~xP Ox l ~xl Ox p 

we get 

i m i m m i 
FmkR;p  I + P)mRkpl  -- F)kRmp l = 0 ( 4 . 7 )  

2 An in f in i t e  der iva t ive  w o u l d  involve  an  in f in i t e  n u m b e r  o f  g a m m a  te rms ,  and  i t  is n o t  
clear  w h e t h e r  th is  w o u l d  be  f in i te .  Thus ,  we  have  n o t  b e e n  able  to  p rove  g loba l  exis- 
t ence  ana ly t i ca l ly .  
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From (using (3.4)) 

M. MURASKIN 

2eC~ i ~ 2 eai 

3x i3xk  = 3xk  Ox] (4.8) 

we get 

Rtm k - 0 (4 .9 )  

Thus, all the conditions above are satisfied provided R f m k  = O. 
Furthermore, if we take 

°2(P~PF'],,") = °2(~P~"') (4.10) 
~xJ3x k 13x~C3x j 

we see that this is identically satisfied provided (4.6) is satisfied (which is the 
case if Rtmk  = 0). Similarly, we see that for all products of  the field (including 
contractions) the mixed derivatives are symmetric once RSg t = 0. 

We thus get one set of  integrability equations for all tensor fields. 
Let us summarize where we stand. We shall abbreviate equation (3.8) as 

P]~;1 = 0, equation (3.9) as gq;k = 0, equation (3.10) as e~k = 0. The semicolon 
here is an abbreviation for terms that have a formal similarity with terms in a 
covariant derivative. We have to emphasize that this similarity is only formal, 
since we are dealing with a heirarchy of  tensors in a cartesian space and we are 
not talking about curvitinear coordinates. 

The basic field equations of  a aesthetic field theory are then 

T~m'pL..;s = 0 (4.11) 

where T/~m'pa.. is any well defined combination of Pj~, gi], e°~i, 3m" When we 
are considering P]k itself, then we end up with the basic field equations (3.8). 
In conjunction with this equation we need 

R~kt = 0 (4.12) 

which from (3.8) we see is a restriction on the initial data at an arbitrary origin 
point. Equation (4.11) represents an infinite number of  equations. However, 
we already argued that this did not lead to an increased set of  restrictions on 
the initial data. 

The only other way we can think of  treating all infinite derivatives of  the 
field in a uniform way would be to have an equation involving an infinite 
number of  derivatives. It  seems to us that there are advantages in the approach 
we have taken. 

Should we consider the variant theory based on (3.15), then we would have 
to replace (4.12) by (4.7) and (4.4). 

We prove, here, that.ifR}kz is zero at one point, then it must be zero at all 
points. R}~t acts like AZB/CkDz. Thus, we have 

3R~k! i m m i -,rn i m i 
= I k p R j m l  ['lpRjlcm . 3X p -- P m p R j k l  + [ ']pRmkl  + + (4.13) 
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IfRjigl = 0 at the origin, t h e n  ~Rjkl/~X p is zero from (4.13). If  we then take a 
derivative of (4.13), ~2Rjkt/~xP~xt must be zero as well. Similarly we can 
show that all derivatives of R/k l are zero at the origin. Thus, R/k t is zero at all 
points if it is zero at one point. This result may appear quite reasonable. How- 
ever, we have been able to construct theories where this is not the case 
(Muraskin, 1973, 1975) by what amounts to judicious use of scalar functions. 

Using (3.8) and (4.9), we get 

rkrf, m rkr k + r j m r / k  i t - - P i k r j m  = 0 ( 4 . 1 4 )  

This is then the form that the integrability equations take. They clearly act as 
restrictions on the initial data. These equations are 96 in number (there is anti- 
symmetry between k and m) which is more than the number of Fjk at the 
origin, which is 64. Thus, it is not clear at this point that nontrivial solutions 
to the field theory exist. 

However, by now we have found literally hundreds of solutions to (4.14) 
(or 4.7). We shall write down a particular solution later on. The conclusions 
is that solutions to the field theory exists locally. Thus, the theory does say 
something. The problem then is to find just what sort of information is con- 
tained in the theory. 

By writing 

P]k = ac~ia~laTk P~7 (4.15) 

we find (4.14) 

a ,k c~ k X ~ h lP~7 P~, , , + _ - PexPp7 PepPx~, PeuPxp = 0 (4.16) 

It follows that .if we find a simple solution to (4.16) for P~7, we can get a more 
complicated Pie by making use of an arbitrary aai. The resulting Qe will auto- 
matically satisfy (4.14). Thus, from a simple solution P~7, we can generate 
more complicated solutions of the integrabitity equations. 

5. Results 

(a) We have found bounded particle solutions. A particle is taken to be a 
maximum or minimum in a field component. 

(b) We have found solutions for which no sign of singularities appear any- 
where. 

(c) We have found solutions consistent with the natural boundary conditions. 
(d) We have observed a two particle collision. The location of the maximum 

(minimum) center as a function of time is not along a straight line. 
(e) Sinusoidal behavior along a coordinate axis has been observed (although 

integrability was not satisfied here). 
One of our particle systems is shown in Figure 1. Another in Figure 2. 

Actually, Figure 1 is from the closely related equation A//k; z = 0. However, 
similar type results have also been obtained for I']k;t = 0. Notice there is no 
sign of singularities building up in these maps. Also the field tends towards 
zero outside the particle system. 
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data obtained by us which leads to a bounded particle 

6. Computer Studies 

We get a tremendous amount of  numbers coming off  the computer. How do 
we know that nonsence is not being produced? What we do is make use of  one 
of  our previous results. We recall that the integrability equations hold at all 
points, if they hold at one point. Thus, we may periodically check whether the 
96 integrability equations (4.14) (or the 384 equations (4.7)) are satisfied. It is 
too much to expect that these equations would be zero to 9, 10, 11, or 12 
places by accident. 



PARTICLE BEHAVIOR IN AESTHETIC FIELD THEORY 313 

Figure 2 - M a p  of  P~l for data leading to maximum (minimum) center not  lying on a 
straight line as a function o f  time. 

I f  we make the grid small enough, we can get quite accurate results. We 
have, in addition, employed a scheme where we subtract off  corrections that  
arise from repeatedly halving the grid. We can get agreement fo r  (Fj/k)corrected 

i 1/2grid 
- (P]k)corrected to say 11 or 12 places for the case of  the data appearing in 
Figure 1 and Figure 2. We could get even better  agreement if one wanted to 
increase the running time. 

The type of  results we get are strongly dependent on the form of the initial 
data at the origin. For a long time, we were getting fields growing bigger and 
bigger as we moved away from the origin. In one instance we ran 48 straight 
hours on the computer  with no sign of  let up. This suggested to us that a 
singularity was developing. In fact, we can show analytically that  for certain 
data choices singularities do occu r - fo r  example, if all l']k are equal. 
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A set of data giving rise to a bounded particle system is as follows. We write 

=   'aeja  r% (6.1) 

with P~.~ having the following nonzero components 

Plo = P~o = Plo = P°o = P~l = P~2 = r~3 = A 

r°x = p% = r% 

r~a = r ~ ,  = P~2 = - P ~ a  = - P ~ :  = - P ~ ,  = C (6 .2 )  

For any choice of A, B, C we get the integrability equations (4.7) are satisfied. 
I fA = B = C, then Rik t = 0 is satisfied. P ~  has the property of being un- 
changed by a 3-dimensional rotation. This can be seen from the fact that Pff.~ 
has the structure ( e p ~  is the antisymmetric symbol) 

P~y = 6 ~ ¢ ~  - g~,¢'~ + 5,y~O~ + gaOBPeoa~,, [ + P~X~X~, (6.3) 

with 

~ = d ? =  0 = B = I a = X = X = 0  i00 ) (o00i) 1 0 10 1 0 (6.4) 

gc~¢3 = 0 1 gC~= 0 1 

0 0 0 0 

since g~t3, gat~; ~0, 0 0 • . .  are unchanged by a 3-dimensional rotation, it follows 
that 1~ 3, is invariant under such a transformation. 

In (6.1) a~i can be considered a dynamical field, a~i also has the same formal 
effect as a coordinate transformation. We may argue that there should exist a 
set of coordinate transformations that do not have the effect of introducing 
any dynamics. With the present data rotations of the coordinates have this 
property. 

In this way, we build into the theory the seventh hypothesis (g), listed pre- 
viously under Aesthetic Principles. 

The set of data described above was our first example of a bounded particle 
solution to the equations lP/k;z = 0. Since then, we have found a solution with 
greater complexity. A planar map of this new solution is given in Figure 2. The 
data here does not appear (at least on the surface) to be related to a rotationally 
invariant F~.y. Still a rotation of coordinates does not appear to alter the over- 
all characteristics of  the particle system. Thus, strict invariance of P~3, may 
not be necessary in order to satisfy the seventh aesthetic principle (g). 

7. Additional Points 

There are some points that we feel should perhaps be emphasized. In stan- 
dard tensor analysis, there is no difference between covariant and contravariant 
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indices in an orthogonal coordinate system. However, our introduction of  upper 
and lower indices has a different purpose. In our approach, the coordinate sys- 
tem is just an arena for the dynamical fields. If  we consider a field gij, we can 
introduce a dual or inverse field gik such that gqgik = ~ i k. Thus gij is just the 
cofactor of gq divided by the determinant of  gq. In other words, gjk is just an 
abbreviation for certain combinations o f  the field components gq. Thus, the 
upper indices carry dynamical information and does not represent parallel pro- 
jection of  a vector on the coordinate axes as distinguished from perpendicular 
projection. 

Thus, we may introduce upper indices in a cartesian coordinate system. 
Fields with upper ind.!ces carry dynamical information. The problem to be con- 
cerned with is that g '  may not exist at all points. In our initial work on aesthe- 
tic field theory, we assumed tha tg  0. ~ ( - 1 ,  - 1 ,  - 1 ,  +1) at infinity and we 
supposed that gi] could be defined at all points. However, in such a theory it 
was necessary for an infinite number of  restrictions to be imposed on Pjk at 
the origin point in order for P]k ~ 0 at infinity. All invariants formed from 
P]k and gq, gtm had to be zero at the origin. Such a set of  initial data is not 
easy to come by. Nevertheless, we did find some examples of  such data. How- 
ever, in none of  these examples did we find a bounded solution. 

Our best computer results occur with data that appear to satisfy gq -+ 0 at 
infinity. Since g -+ 0 at infinity, we conclude that gtl is not defined at all 
points. Thus, we have to be careful and not introduce inverse fields when they 
are not defined. 

We can still introduce upper indices using the dual field e d .  The dual field 
can be introduced if it can be demonstrated that eai -+ 6~i at infinity. 

On the other hand, once we have established the point that upper indices 
have dynamical character, we can argue that the introduction of  upper indices, 
in terms of  inverse fields for gq and eai is not a necessity. 

The difference between two vectors in a cartesian space is a vector. The role 
of  the upper indices in (3.1) is to denote scalar products. This is a dynamical 
way for introducing a scalar product. We make the requirement that I~ttg (as 
well as P~t) act like a vector. This fixes the change of  upper index fields to 
have the same structure as (3.5) (see footnote 3). 

Up to now, we have assigned Pjk as well as gq in an arbitrary fashion at the 
oriNn point. But so far as the field equations are concerned, gq is a secondary 
type field. That is, P]k determines the change ofgi], but gq does not affect the 
change of  P/k- Thus, a simplifying hypothesis would be to consider only Pj/k as 
arbitrary at the origin point. All tensors would be products or contractions of  
the basic field. Pjk. 

t ~ From I']k we can form objects like gi] - rtil;si. However, since F]k should 
go to zero at infinity, g 0  would also go to zero at infinity. Thus, ~0 would not 
be defined at all points. This tells us that we cannot indiscriminately introduce 
inverse fields once we impose the conditions I).ig -+ 0 at infinity. Indeed, there 
is no gi! constructed from P]k that is defined at all points. 

3 P~k acts like AtBtC k and like D k, 
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With such a viewpoint, it is not  necessary for Fj~ to obey an infinite number 
of  restrictions at the origin in order for FIg -* 0 to go to zero at infinity. In 
fact, the data associated with Figure 2 is an example o f  a situation where F j~-  
appears to go to zero at infinity without any restrictions imposed at the origin. 

8. Outlook 

The aesthetic principles discussed here (see also Muraskin, 1970; 1971a, b; 
1972a, b, c; 1973a, b; 1974; 1975; Muraskin and Clark, 1970; Muraskin and 
Ring, 1972; 1973; 1974a, b;) are meant to be of  such a basic and attractive 
character that they would be desirable in any fundamental physical theory. 
Conversely, a theory that does not,  for example, treat all derivatives in a uni- 
form way, would appear to us to be incorrect. We have seen that a theory 
based on aesthetic principles does have considerable content. It is also hard to 
believe that solutions to the aesthetic equations with even greater complexity 
do not exist. 
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